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Prediction of strength of recrystallized
siliconcarbide from pore size measurement
Part| The bimodality of the distribution
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The bending strength values of more than 100 specimens of a recrystallized siliconcarbide
ceramic (RSiC) show a distinct bimodal Weibull distribution. By measuring the number and
size of surface pores, calculating the distribution of volume pores and choosing appropriate
shape factors for the pores in the volume and for those close to the surface, the two modes
of the Weibull distribution of the strength values can be predicted. © 2000 Kluwer
Academic Publishers

1. Introduction sound microscopy [25-28] or optical methods (light
To describe the fracture behaviour of brittle materials,microscopy [13, 24, 29] and transmission optical mi-
the Weibull distribution has been widely used [1-3]. croscopy [14, 30]).

It is based on the “weakest-link hypothesis”, which The reliability of the predictions of the mechanical
means that the most serious flaw controls the strength. iroperties from the measurement of pore size distri-
the number of the large pores, i.e. the ones, which arbutions is furthermore complicated, if a material does
responsible for failure, is distributed according to annot perfectly obey the Weibull statistics. In particular,
inverse power law, the strength values are distributedor ceramic fibres, this behaviour had been observed
according to the Weibull distribution [2, 3]. Thus the and attributed to the existence of different flaw pop-
statistical distribution of the flaw dimensions is closely ulations, e.g. surface and volume flaws [31-33]. To
connected to the fracture stresses obtained by mechaimprove the description of the experimental results,
ical tests. This relationship has been used to predidlifferent ways were proposed, e.g. a modification of
the distribution of flaw sizes and positions from differ- the two-parametric Weibull distribution [34], a bimodal
ent fracture experiments [4—8]. Reversely, a number ofognormal distribution [35], generalized distributions
authors tried to predict fracture stresses from flaw popassuming a Poisson flaw model without presuming a
ulations [9-15], which would offer a non-destructive particular functional form [36], as well as bi- and mul-
tool to measure mechanical properties. The applicatiotimodal Weibull distributions [32, 37, 38]. For ceram-
to ceramic materials faces two main problems [13]:ics, the bimodality due to different flaw populations has
Firstly, the defects in ceramics are usually small andbeen more a theme of theoretical considerations than
secondly, the relation between the fracture strength andf experimental results [2, 3, 37]. The reason is proba-
the size and geometry of the defect can be very complexly the great experimental effort and the cost involved.
Thus, an experimental verification of the relation of the The statistical scatter of the fracture strength of brittle
structure to the strength needs extensive fracture testingaterials requires a large number of specimens for
and a considerable fractographic effort. The difficulty isstatements based on reliable data. Therefore most pa-
to obtain a reliable distribution in particular of the large pers dealt with the numerical simulation of experiments
pores. Scattering methods [16] or transmission electroand investigated for example the precision of different
microscopy give only information on the small pores evaluation procedures [39—43]. To cope with the sta-
[14], whereas mercury porosimetry [17] and impedancdistical scatter, the strength values were determined by
spectroscopy [18] cannot resolve the distribution withmore than hundred tests and then compared to predic-
a sufficient precision. Though there are some new detions made by non-destructive measurement of the pore
velopments like magnetic resonance imaging [19, 20Eize distribution determined by the measurement of an
or thermal nondestructive testing [21], the most widelyarea of 16000 square millimeters. The large number of
used method to determine flaw distributions is digi-fracture strength data showed a distinct bimodality. The
tal image analysis in connection with scanning elecdarge area, from which the pore size distribution was
tron microscopy [22], X-ray imaging [23, 24], ultra- measured, could be used to explain this bimodality by
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being a consequence of the different shape factors of theore size distribution and strength, this high porosity
pores in the volume and the pores close to the surfacdias the advantage that the dimensions of a large num-
The bimodality is important for practical reasons: if the ber of pores could be collected easily. From each of
size of the tested specimen does not coincide with théhe mechanically tested specimens 25 to 30 of such mi-
one of the future construction part, itis possible that thecrographs were taken and subsequently evaluated by
parameters of the “wrong” distribution are measureddigital image processing. The maximum and the mini-
For example, if the tested specimens are small, theynum pore size, the maximum and minimum pore size
could fail due to volume flaws, whereas large construcin the specific directions of the long axis of the speci-
tion parts could fail due to surface flaws with much men and perpendicular to this axis as well as area and
lower Weibull parameters. Thus, this work focuses inperimeter were measured.

particular on the bimodality. The limitations by a dis-

tribution being not exactly power-law distributed or by

a limited measured area (limited number of pores) ar8. Theoretical considerations

discussed separately [44]. Iflinear elastic fracture mechanics (LEFM) is presumed
and the frequency distribution of pore sigé) de-
creases with an inverse power law with an expoment
and a scaling pore siza, the fracture probabilities

P: are Weibull distributed with an exponent and a
scaling parameterg [1-3]:

2. Materials and methods

The material investigated was a recrystallized silicon-
carbide. This material has a high strength in relation to
its density and is nearly free of second phases (sintering A\ m
aids) except for a rest of free silicor:{ wt.%). Thus _ a 1 (o

itis highly creep resistant. A high thermal conductivity 9(@) = g(aSC)<asc) - h=1 exp( <oo) )
and a low thermal coefficient of expansion allow this

material to be applied for kiln furniture in the ceramic 1)
industry. A short description of the material may be By this, the parameters of the poregdp), r) and the
found in [43, 45], a precise description of processingones of the strengthy§, m) are related by [2, 3]

and texture in [46].

More than hundred specimens, which were tested in m=2(r —1) and
four-point bending in a previous work [43] were ground 1/m
and polished to a final mesh of dm. Each of these o0 = < m ) Kic (2)
specimens was investigated in the optical microscope. (2asc9(asc) Vo) (Y(ras)/?)’

Fig. 1 shows a micrograph of the material, which repre-

sents an area of 4.44 square millimeters. As itis clearlywhereV, is the effective tested volum&, the critical
visible, the material is highly porous. From a technicalfracture toughness andthe shape factor.

point of view this has the advantage that the density There are the following difficulties:

is relatively low and thus the material contributes to

energy saving when used as kiln furniture [47]. With e Firstly, fracture toughnesK,; has to be known.
respect to our investigation of the relationship between  In this work it was measured by an independent
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Figure 1 Micrograph of the porous RSiC. The bar equals 500 microns.

700



procedure (single edge notched beam, notched by A
a diamond blade with a thickness of 50 microns,

resulting in a notch radius of about 30 microns).

Five tests were performed according to the German /2
prestandard DIN 51109. The fracture toughness

turned out to be D5+ 0.1 MPa,/m. A compari- a/2 h
son of this test method to others could be found in
literature with data obtained by a round robin test
for five different brittle materials [48].

e Secondly, the shape factdgrhas to be determined.

o Thirdly, the volume frequency distribution of the
pore sizes has to be known. In the following the
way to calculate it from the measured surface dis-
tribution will be investigated. The consequences
due to a limited number of pores (i.e. a limited
area measured) and a distribution, which does NOkigure 3 Dependence of a (diameter of spherical volume pores) to the
perfectly obey a power-law, were investigated sep-observed length (diameter of surface pores), if a plane cutis performed.
arately [44].

With the assumption that both, the surface and the vol-

To calculate the volume distribution from the sur- b | £ 1
face distribution determined by the microscope, in aUMe POres, obey an inverse power law (Equation 1),

first approximation the shape of the pores is assumefind Py use of the following identity (see Fig. 3),
to be spherical and the dependence of the number on

the size should be distributed according to a power law, b=2(a/2?—-h? and
Equation 1. These assumptions allow an analytical ex- a
; \ . 2 b
pression to relate the number of pores in an unit volume 1= 3 / dh = / dbzi 5)
a

to the one in an unit area instead of numerical proce-
dures, e.g. the Schwartz-Saltykov diameter method [131] i
or the 3D-fibre orientation reconstruction from image te relation of the surface and the volume pores can be
analysis [49]. calculated:
The probability to find a pore of a certain size, de- 00
noted bya, by a plane cut out of a certain volume ise/ db gs(b) =/ da ag,(a)
a/L (Fig. 2). Thus the total number of pores in a surfac 0
S, observed in an intervah| a + da], is related to the 00 a b
number of pores in a volumé by / da ag,(a)/ db N

be(@a—b
NGLS L S= NV vE o Nev as  (3) / da ag,(a) f db ( )()

in[a+ da] in[a+da] L

By integration over all possible pore sizes a the diswhere® is the Heaviside step-function. Performing a
tributions of surface and volume poreg,andg,, are  change of the integrations and inserting the power law
related by (Equation 1) into Equation 6 leads to

/Ooo dbgs(b)=/0oo da ag,(a) (4) /()wdb%(b)zﬁwdb/c)“dagd(a)\/% @

With the substitutiorb = ax the integration can be an-
TR alytically performed, with the indices s and v denoting
the parameters of the surface and volume distribution
of pores, respectively:

rv = rs + 1
L
Os(asc) :
= th
Ov(asc) (3:0) wi
[ T(rs/2+1/2
G = ZM (8)
2 I'(rs/2+1)
whereT is the Gamma-function. From this equation

and Equation 2 the parameters of the Weibull dis-
Figure 2 The probability to find a pore in a volume by an arbitrary plane t”bUted_ strength values follow immediately. Be_cause
cutisalL. a spherical shape of the pores was assumed, this model
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is a certain simplification. The calculated results, how-The amount of fractures from surface pogess then

ever, will confirm that despite these approximations reacalculated by the relative amount of critical surface

sonable predictions about the mechanical strength angores from all critical pores (the factor two in the lower

obtained. integration limit arises, becausgis only the long axis
Now, if the pores are homogenously distributed, it isof the ellipse, the total length of the pore being twice

obvious that a part of the pores is located in the volumehat value):

and a part close to the surface. They both are accom-

panied by different shape factors. It is thus convenient °° da %g(a) /oo da ig(a)

to describe the mechanical fracture behaviour by the 2a, W 2, 2W

existence of a single flaw population with two different = < = < (14)
shape factors, the one for the volume porgsnd the e da g(a) fzac da g(a)

other for the surface poré&. In a first approximation,
the shape factor of an elliptical pore with axasbg in
an infinite body in tension is given by [50]:

4. Results and discussion

Yy (0) = bo SIrP(0)+ a0\’ co(0) 025 with If a specimen contains different flaw populations, they
T agE(K) bo all contribute to the failure probability [2, 32, 37]:

2 my my
- - (%) o) ple_exp(_(i) -(2) ) (15
do 001 002

for ap > bo, E(K) being the complete elliptic integral Thjs equation is valid, if the distributions are indepen-
of the second kind. The subscript zero characterizegent, continuous and both equally frequent and present
the long axis of an elliptical pore, which is related 10 jn all specimens. In the case of a sufficiently small test
the pore diametea measured by the microscope by yolume this is not generally valid: If for example one
ap=2a/2. As the pores are arbitrarily oriented, numer-gjstribution has a low scale parameter, but the number
ical integration of the shape factor with respect to itspf the defects is small, only a small number of speci-
angle and inserting the ratio maximal to minimal poremens will fail due to this distribution. One possibility is

length, which was obtained by the pore size measurey, correct Equation 15 by a parameter, which describes
ments as the mean of allmeasured pdig&o =b/a=

0.63, gives:

2 /2
Yo== f d9 Yy (6) = 0.555 (10)
0

The shape factor for the surface pores is given by thi
area of the crack on the plane of maximal stress [51] 0.6 |-
which is, for an elliptical crack, the areaag by =: a

Ys = 0.65,/a;'/area= 0.771 (11) 0zl

The amount of specimens fracturing from surface de
fects 8 could be estimated by the relative amount of
critical surface pores. Each surface pore has an effe
tive lengthae, which is obtained by the mean of the 2r
length. This corrects that not each pore is touching ths

surface (if this is the case, the effective length would D_;S ol
equal to 2ap), but may be partly cut by the surface: |
1 a l \\-/
== dxx=za 12 T 2r
er = [ ; @
Then the relative amount of surface pores, which art £ 4
critical, is obtained similarly to Fig. 1 by the probabil-
ity of a pore being located on the tensile surface, whict 5 o

is Ps=a/W (W being the width of the specimen). In-
serting the scale parameter for the surface pores ar
their shape factor, a mean critical length is estimatet o [MPa]
from Griffith theory:

60 80 100 120

Figure 4 Fracture strength values (circles). Solid line: Fit by the addi-

K 2 tive bimodal Weibull distribution (Equation 16), dashed line: fit by the

— ($> (13) multiplicative bimodal model (Equation 15). For low strength values,
UOSYSﬁ the fit results differ, for high values they coincide.
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the relative number of defects of both distributions, thetributions was responsible for failure. Because the sur-

other is to use an additive Weibull equation [38]: face pores have a higher shape factor, they fracture first
(compare Equations 10 and 11). The relative amount of
o \™M critical surface to volume pores is described by the pa-
Pr = [1— (1-a) eXp<— (—) ) rameterB. Thus, if the last term in Equation 16 denotes
oo1 the surface distributiory from the mechanical tests is

(16) Fig. 4 shows the typical Weibull plot for the mea-
sured strength values, the upper diagram with a lin-
ear and the lower with a logarithmic scale. A distinct

Two parameters describe each of the respective Weibublimodality of the fracture strength could be observed

distributions go1, My, 092, My, and one parametarthe  from this diagram. The circles represent the measured

effectiveness of each distribution, i.e. which of the dis-

o \M equal tog from the pore size measurements, d.e= 3.
ta p( (2) )}

002

Figure 5 Specimen surfaces with fracture lines after test (between arrows). The bar equals 1 mm. a) huge surface pore could be identified as fracture
origin (upper picture), b) surface and volume pores could not be distinguished as fracture origin (lower picture).
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strength values, the dashed line a fit by Equation 130 the same parameter obtained by the fit from the me-
(multiplicative bimodal Weibull distribution), the solid chanical tests.
line by Equation 16 (additive bimodal Weibull distribu- ~ Unfortunately, it is not possible to determine the
tion). For low strength values, the fit results differ, for relative amount of fractures from surface poteby
high strength values, they coincide. But it can clearlyfractography. Fig. 5a,b show binary pictures of two
be seen that the additive equation better describes thapecimen surfaces before the fracture test, and an addi-
experimental results. tional gray line depicts, where fracture occurred. Only
The results from the mechanical tests are now comin some rare cases (Fig. 5a) a huge pore can be identified
pared to those obtained from measurements of the diss the fracture origin, but usually one cannot distinguish
tribution of pore sizes. This is performed under thebetween surface or volume fractures (Fig. 5b). Even in
assumption that the pore dimension perfectly obeys subsequent fracture analysis the rough surface (due to
the power law (Equation 1). From the measurementhe high porosity) and the lack in fracture mirrors and
of 16000 square millimeters of polished surface offracture lines prevents from an unique identification of
RSIC, the fit parameters obtained for a scaling pordracture origins.
Sizeagc= 200 microns were

gs(as) = 4.312x 1Bm~2 and rs = 6.694 (17) 5. Conclusion

i o ) The aim of this work was to show that with very simple
Note thatgs is the frequency distribution density of sur- assumptions a reasonable value for the strength distri-
face cracks (dimensionTd) and not the defect density, pytion of a porous ceramic material can be obtained.
which is obtained by integration over the crack length.pe 1o this simplifications there exist a lot of possibil-
The values for the surface parameters are inserted inf@es to improve the reliability of the predicted strength
Equation 8 to calculate the volume parameters: values. The firstimprovement could be to calculate pre-
> 4 cise shape factors, if the geometry is well known. A
Ov(as) = 4.935x 10"m™* andr, = 7.694 (18)  second improvement is to take into account the inter-
action of pores and the shielding of the stress field by
from which m, =2(ry — 1)=134 can be computed. neighbouring flaws. Another possibility could be the di-
With the knowledge of the fracture toughnes€)2=  rect determination of the three-dimensional pore distri-
0.1 MPan¥/?, the strength immediately follows from pution by appropriate censoring techniques, e.g. x-ray
Equation 2. imaging or acoustical microscopy. This would make ob-
The Strength values from an unimodal Weibull fit areso|ete the S|mp||fy|ng assumption of asherical Shape of
shown in the first column of Table I, the ones from the pores. It was, however, not the goal to find a perfect
a bimodal fit in the second and the values calculatedo|ution, which completely describes the fracture be-
from the pore size measurement in the third column ohayiour, but to show that with some simple estimations
Table 1. The predicted scale parameters correspond peg: reasonable result for the fracture strengths could be
feCtIy to the ones obtained from the mechanical teStSObtained from pore size measurements and that more-

The Weibull modulus from the pore size measuremengyer the bimodality of the Weibull distribution found a
is 13.4, whereas the bimodal fit from mechanical testgjmple explanation.

results in 16.1. Monte-Carlo simulations have shown Of course, the experimenta| verification was per-

that the variation coefficient of the modulus is gener-formed for recrystallized siliconcarbide as a model ma-
ally about ten times the one of the scale parameter [42}erial. Due to the high porosity of this material and the
For a material perfectly obeying the Weibull distribu- good contrast between pores and material it is rela-
tion the variation coefficient from 123 mechanical testStive|y easy to assemble a Sufﬁcienﬂy |arge number of
Am/mis nearly 8% [42] and it could be even much pore size data. It should be noted that the required effort
larger for a bimodal material [43]. This should explain could increase considerably for other ceramics. How-
qualitatively the observed higher deviation for the pre-eyer, the method seems to be of great practical interest,
dicted values for the Weibull modulus. Addltlona”y, as it offers the poss|b|l|ty to predict the mechanical be-
the relative amount of fractures due to surface poreshaviour from non-destructive pore size measurements
the parametew, was obtained by inserting a critical duringindustrial processing. The development of future
length ofac = 484 microns obtained from Equation 13 new automatic techniques to measure small structures
as lower integration limit into Equation 14 and is closejn three dimensions will offer additional possibilities to
enhance the prediction of the mechanical properties of
materials by non- destructive testing.

TABLE | Comparison of bimodal Weibull parameters from the fit of
the strength values and the calculation from pore size distribution
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